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LETTER TO THE EDITOR 

Low temperature behaviour of the random field Ising 
model 

C Domb and 0 Entin-Wohlmant 
Physics Department, Bar-Ilan University, Ramat-Gan, Israel 

Received 21 October 1983 

Abstract. A relationship is established between the king model in a random positive and 
negative magnetic field on a lattice with p =f. At T=O each percolation cluster gives rise 
to a first-order transition at a different value of the field. There is a significant difference 
in behaviour between lattices for which p , < f  which have an infinite cluster, and p c > i  
which do not. By considering the Bethe lattice and allowing the coordination number to 
become large, the results of the mean field approximation are reproduced. The above 
considerations do not apply to a Gaussian distribution of fields, and the absence of a 
first-order transition can be understood in this case. Since large clusters overturn for small 
fields there are clear indications of metastable behaviour. 

Evidence has been accumulating that the critical behaviour of the Ising model in a 
random field is much more complex than had been thought at first. There were strong 
indications that for dimension d > 4 the critical behaviour of the random model parallels 
that of the standard model in (d-2) dimensions (Aharony et a1 1976, Young 1977, 
Parisi and Sourlas 1979). However, this may well be an oversimplification (Schwartz 
1983). Also the question of the lower critical dimension for which there is no transition 
is still unresolved, alternative arguments having been advanced to support dl = 2 (e.g. 
Grinstein and Ma 1982) and dl = 3 (e.g. Pytte et a1 1981, Niemi 1982). (For a general 
review of the current situation see Imry (1983).) 

Even in mean field treatment, the model shows a surprising dependence on the 
form of the random field distribution. Calculations for a model with a Gaussian 
distribution of fields by Schneider and Pytte (1977) led to a line of second-order 
transitions separating the ferromagnetic and ‘spin glass’ phases. But for a &function 
distribution with equal probabilities of positive and negative fixed fields, *Elo, Aharony 
(1978) showed that there is a tricritical point, and that at sufficiently low temperatures 
the phase transition becomes first order. Precise conditions on the probability distribu- 
tion for obtaining a second- or first-order transition at T = 0 in the mean field treatment 
have been discussed by Andelman (1983), and are quite complex; it is not sufficient 
to look at the sign of the second coefficient iq a Landau expansion of the free energy. 

Our own investigations have been concerned with the derivation of linked-cluster 
expansions of ‘excitation’ type (Domb 1970) to describe the disordering of the ferro- 
magnetic state. In the course of these investigations we studied the behaviour of 
short-range force lattice models with a &function distribution of random fields as a 
function of the magnitude of the field at T = 0, and we were surprised to find that the 
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system undergoes a hierarchy of first-order phase transitions in a manner reminiscent 
of the Griffiths singularities for a dilute ferromagnet (Griffiths 1969, Domb 1974a). 
This applies to lattice models in all dimensions. Similar results for the SQ lattice in 
two dimensions were reported by Morgenstern et a1 (1981), and non-analytic behaviour 
has been reported recently by Schwartz et a1 (1983). 

We have established a correlation between the behaviour of the model and site 
percolation on the lattice with probability p = 4. A significant feature of the problem 
is the value of the critical percolation probability pc for the lattice. If p , < j  there is 
an infinite cluster at p = 4 which gives rise to the dominant first-order transition at T = 0. 

We looked at the model for a Bethe lattice in order to see how its behaviour differs 
from that of the standard lattice models. In the limiting case of large coordination we 
were led to the mean field treatment. 

Finally, we studied the corresponding behaviour of the Gaussian distribution and 
were able to see qualitatively how the first-order phase transitions disappear. 

For simplicity we deal with the spin-4 Ising model with Hamiltonian 

i 

using standard notation (Domb 1974b). The Hi are distributed randomly with probabil- 
ity p ( H )  d H  which here we shall take to be 

p a w )  = - Ho) + 6 ( H  + H0)l. (2) 

For sufficiently small Ho ( T  = 0) the coupling between neighbours dominates, and the 
lowest energy state is ferromagnetic with energy 

Eo, = - IqJ. (3) 
However, when Ho becomes sufficiently large the coupling between neighbours is 
broken and each spin orients in the direction of its own magnetic field. Following 
Schneider and Pytte (1977) we shall term this the spin-glass phase, since the spin-glass 
order parameter 

Q = ( ( g i ) ‘ ) h  (4) 

EOsg = -mHo. ( 5 )  

is equal to 1 for this phase. The energy of the spin-glass phase 

From energetic considerations above a transition from ferromagnetic to spin-glass 
phase should take place at a value of Ho given by 

mHo = $qJ. (6) 
However, this is an ‘average’ consideration. When we come to look at the conditions 
for the overturn of individual spins we will encounter much greater complexity. 

Let us first analyse the pattern of local fields in the ferromagnetic phase. One 
half of the spins on average will be oriented parallel to their local fields. The other 
half which are oriented antiparallel to their local fields can be put into correspondence 
with a site percolation process on the lattice with concentration p = 4. In this process 
a fraction al of sites will consist of isolated singlets, a2 of doublets, ai’), a$’’ and ai3’ 
of the various types of triplet cluster, and so on; the fractions ali) can readily be 
estimated from the perimeter polynomials for the lattice (see e.g. Domb 1983). If 
there is an infinite cluster present we must add a term a, to account for the fraction 
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of sites contained in the ‘infinite’ cluster, and we have the relation 

For most two-dimensional lattices there will be no infinite cluster at p = k  but for 
lattices in three or more dimensions there will usually be an infinite cluster. 

Consider now the field needed to overturn a singlet spin. The coupling energy lost 
in such an overturn will be 2qJ, and hence such an overturn will not occur until the 
field Ho reaches a value given by 

mHol = qJ. (8) 

The corresponding coupling energy lost in the overturn of a doublet will be 4(q  - 1)J, 
the gain in magnetic energy will be 4mH0, and the overturn will take place at a lower 
field 

mHo, = ( q  - 1)J. (9) 

We can proceed similarly to find the value of Ho at which any r-cluster will overturn. 
For compact clusters the value of Ho will decrease steadily with increasing r, since the 
gain in magnetic energy will be given by 2rmH0 and the loss of coupling energy will be 
of order Jrd-l’d. However small the field, it will be possible to find a sufficiently large 
cluster for which an overturn is energetically favoured. But the fraction of spins 
involved in such an overturn will be very small. 

For ramified clusters Ho will reach a non-zero limit as r increases, and for the 
infinite cluster (which is ramified) this limit is given by 

mH,, = $45 (10) 

for all lattices since the distribution of neighbours in the infinite cluster is random (see 
e.g. Domb 1983). 

Let us now consider the behaviour of the model as Ho increases. For each critical 
field H g )  corresponding to the overturn of a particular r-cluster there will be a 
first-order phase transition, the ferromagnetic order parameter 

R = (ai) (11) 
dropping discontinuously by an amount a:’). For small Ho these critical fields will be 
densely packed, the point Ho = 0 being a point of accumulation, and the amounts a!’) 
will be small. But as Ho increases it will be possible to distinguish individual critical 
values and discontinuities, until at a critical field 2qJ/ m the final jump of a1 will occur 
to R =O. 

The above pattern of behaviour was described for the SQ lattice by Morgenstern 
et a1 (1981) for which q = 4 and pc > $, and there is no infinite cluster. But when pc < $ 
and there is an infinite cluster present, most of the spins will have aggregated to the 
infinite cluster which will provide the dominant singularity at the value of field (10) 
corresponding to the ‘average’ transition (6). 

The above argument can readily be extended to the Bethe lattice. Equations (8) 
and (9) giving the critical field for the overturn of singlets and doublets remain valid, 
but all clusters are now ramified, and there is a limiting field below which no clusters 
can overturn. This field corresponds to large ramified clusters with minimal end effects, 
and is given by 

mHo = (9  - 2)J. (12) 
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The value of Ho corresponding to (12) is now a point of accumulation of first-order 
transitions. 

To proceed to the mean field limit we must allow J to become small and 4 to 
become large, 4J remaining finite. We then find that the contribution of finite clusters 
becomes negligible as q + 03, the total contribution coming from the infinite cluster 
for which mH = i4J. At this value R drops from 1 to 0. This is the behaviour found 
by Aharony (1978). 

We now turn to the case when the random fields follow the Gaussian distribution, 

An immediate difference from the &function distribution is the form of the lowest 
energy state. For any finite value of U t iere  will be overturned singlets corresponding 
to local fields in the tail of the distribution for which 

mHi > 45. 

There will be overturned doublets for pairs of neighbours satisfying 

m ( Hi + Hi) > 2( q - 1)J, (15) 

and similarly for higher-order clusters. 
As U increases there are no critical values at which particular clusters are suddenly 

able to overturn. The fraction of r-clusters overturned changes smoothly as a function 
of U, and the mechanism for generating discontinuities and first-order phase transitions 
has been removed. 

But it is not clear whether there is any finite value of U at which R becomes zero, 
giving rise to a second-order transition. For any U, however large, there will be spins 
with small local fields which will not satisfy equations like (14), and it seems as if R 
will not become zero until U becomes infinite. The influence of the infinite cluster and 
the mean field second-order transition found by Schneider and Pytte (1977) and 
Aharony (1978) require further investigation. 

When we consider the behaviour as a function of magnetic field for T > 0, finite 
clusters no longer give rise to discontinuities but to smooth ‘bumps’. The only discon- 
tinuous transition which remains corresponds to the infinite cluster and takes place at 
a magnetic field close to (12). 

It is clear therefore that any lattice for which the critical site percolation probability 
pc 3 f cannot have a discontinuous transition. This applies to standard two-dimensional 
lattices, and is in agreement with Morgenstern et al(1981) for the SQ lattice. However, 
it is possible to find highly coordinated lattices (e.g. the SQ lattice with nearest, second 
and third neighbour interactions) for which pc < f. If current ideas about the absence 
of a transition for the random field model in two dimensions are correct (see e.g. 
Aharony and Pytte 1983) the infinite cluster should then be unstable against small 
temperature perturbations. But this is worthy of direct investigation by series and 
Monte Carlo methods. 

Standard three-dimensional lattices have pc < f, and therefore give rise to an infinite 
cluster at p = 4. However, it may be possible to find loosely packed lattices for which 
p c > i  (e.g. the hydrogen peroxide lattice for which 4 = 3 )  for which there is no 
discontinuous transition. If there is always a transition in dimension d 2 4 ,  then no 
lattice can exist with a sufficiently loose packing to have p c > f .  The question of 
maximum looseness of packing is of considerable geometrical interest (see Hilbert and 
Cohn-Vossen 1952), and is clearly relevant here. 
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We have established a complex pattern of behaviour at the absolute zero for all 
short-range force lattice models. It is clearly an oversimplification to state that the 
random field model in d dimensions parallels the non-random field model in d - 2  
dimensions. The discontinuous transition corresponds to the behaviour of an infinite 
site percolation cluster in the lattice for p = $. But we can now understand the irregular 
behaviour of high and low temperature series expansions, since there are finite cluster 
effects on both sides of the transition. It might be advisable to develop series expansions 
for the infinite cluster alone. 

Several of the effects which have manifested themselves are non-universal, e.g. the 
dependence of critical behaviour on the form of the probability distribution p ( H ) ,  and 
the presence or absence of an infinite cluster in the lattice when p = f. This may have 
some relevance to the confusion regarding the lower critical dimension d,  mentioned 
above. 

An interesting difference from the standard Ising model arises in the nature of 
overturned clusters as the field is increased. For the standard ferromagnetic model, 
in a small field single spins can overturn, and as the field increases larger and larger 
clusters are able to overturn. For the random field model the largest clusters can 
overturn for the smallest fields, and the highest field is required to overturn single spins. 
When we consider the dynamics of the model it will be difficult to find processes for 
which large numbers of spins can overturn simultaneously, and the indications are clear 
for significant metastabilities. 

Some of the above considerations apply to the spin-glass problem for which the 
associated clusters involve a bond percolation process. We hope to discuss this in a 
subsequent communication. 

We are grateful to H Sompolinsky for suggesting the use of series expansions in this 
problem, and to A Aharony for helpful comments on the original manuscript. Financial 
help from the Israel Academy of Sciences and Humanities is gratefully acknowledged. 

Note added in proof. The situation as depicted in 0 2 represents an oversimplification. 
Each percolation cluster need not overturn as a whole. It will do so only if it is more 
compact than any of its sub-clusters, otherwise it may split. For example in a cluster 
with a compact core and tentacles, the compact core will overturn at a lower field than 
the tentacles. However, this does not affect the basic pattern of behaviour described. 
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